Plasmon-mediated resonance energy transfer by metallic nanorods

نویسندگان

  • Yi-Cong Yu
  • Jia-Ming Liu
  • Chong-Jun Jin
  • Xue-Hua Wang
چکیده

We investigate the enhancement of the resonance energy transfer rate between donor and acceptor associated by the surface plasmons of the Ag nanorods on a SiO2 substrate. Our results for a single nanorod with different cross sections reveal that the cylinder nanorod has the strongest ability to enhance the resonance energy transfer rate. Moreover, for donor and acceptor with nonparallel polarization directions, we propose simple V-shaped nanorod structures which lead to the remarkable resonance energy transfer enhancement that is ten times larger than that by the single nanorod structure. We demonstrate that these structures have good robustness and controllability. Our work provides a way to improve the resonance energy transfer efficiency in integrated photonic devices. PACS: 78.67.Qa, 73.20.Mf, 42.50.Ex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ense...

متن کامل

Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors

Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...

متن کامل

Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection.

Previously we have demonstrated surface plasmon enhanced energy transfer between fluorophores and gold nanorods under two-photon excitation using fluorescence lifetime imaging microscopy (FLIM) in both solution and intracellular phases. These studies demonstrated that gold nanoparticle-dye energy transfer combinations are appealing, not only in Förster resonance energy transfer (FRET) imaging, ...

متن کامل

High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent

While gold nanorods have been extensively studied and used in many biological, plasmonics, and sensing applications, their conventional seed-mediated synthesis still presents a number of limitations. Its high sensitivity to the concentration of the reducing agent (ascorbic acid) leads to problems with reliability as well as extremely poor yield of ionic-to-metallic gold conversion, which is onl...

متن کامل

A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection.

Plasmon resonance energy transfer (PRET) has been widely applied in the detection of bio-recognition, heavy metal ions and cellular reactions with high sensitivity, based on the overlap between the plasmon resonance scattering band of nanoparticles and the absorption band of the surface-modified chromophore molecules. Previous sensors based on PRET were all implemented on gold nanospheres with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013